Note Frequency Table For Guitar Players
Note Names, Frequency and MIDI Codes Relationship
When producing music, especially with digital instruments, knowing the relationships among MIDI, frequency and note names is crucial.
This knowledge allows for accurate translation of guitar music into digital formats and vice versa.
On this page, you'll find an interactive tool and a complete table that will help you understand how to express a note by frequency, and, conversely, the frequency of musical notes.
Interactive Fretboard To Show MIDI, Note Names and Frequency
This fretboard shows the musical notes, the MIDI codes and their pitch frequencies in Hertz (Hz).
Click on some frets and select "show MIDI", names or frequency.
What is MIDI
MIDI (Musical Instrument Digital Interface) is a technical standard that describes a protocol, digital interface, and connectors, allowing a wide variety of electronic musical instruments, computers, and other devices to connect and communicate with each other.
Notes On The Guitar
Each note on the guitar, like on any musical instrument, can be represented by a specific MIDI code.
This code is a numerical representation of a specific note and its octave.
Notes On The Guitar
Each note in music corresponds to a specific frequency.
Frequency is measured in Hertz (Hz) and represents the number of cycles per second of a sound wave.
For example, the A open string on a guitar (A2) typically vibrates at 110 Hz.
Note Frequency Chart
The music frequency chart below shows the note frequency for all the existing MIDI codes and the corresponding note names.
Note | Midi | Freq (hz) |
---|---|---|
Cb0 | 11 | 15.434 |
C0 | 12 | 16.352 |
Db0 | 13 | 17.324 |
C#0 | 13 | 17.324 |
D0 | 14 | 18.354 |
Eb0 | 15 | 19.445 |
D#0 | 15 | 19.445 |
Fb0 | 16 | 20.602 |
E0 | 16 | 20.602 |
F0 | 17 | 21.827 |
E#0 | 17 | 21.827 |
Gb0 | 18 | 23.125 |
F#0 | 18 | 23.125 |
G0 | 19 | 24.5 |
Ab0 | 20 | 25.957 |
G#0 | 20 | 25.957 |
A0 | 21 | 27.5 |
Bb0 | 22 | 29.135 |
A#0 | 22 | 29.135 |
Cb1 | 23 | 30.868 |
B0 | 23 | 30.868 |
C1 | 24 | 32.703 |
B#0 | 24 | 32.703 |
Db1 | 25 | 34.648 |
C#1 | 25 | 34.648 |
D1 | 26 | 36.708 |
Eb1 | 27 | 38.891 |
D#1 | 27 | 38.891 |
Fb1 | 28 | 41.203 |
E1 | 28 | 41.203 |
F1 | 29 | 43.654 |
E#1 | 29 | 43.654 |
Gb1 | 30 | 46.249 |
F#1 | 30 | 46.249 |
G1 | 31 | 48.999 |
Ab1 | 32 | 51.913 |
G#1 | 32 | 51.913 |
A1 | 33 | 55 |
Bb1 | 34 | 58.27 |
A#1 | 34 | 58.27 |
Cb2 | 35 | 61.735 |
B1 | 35 | 61.735 |
C2 | 36 | 65.406 |
B#1 | 36 | 65.406 |
Db2 | 37 | 69.296 |
C#2 | 37 | 69.296 |
D2 | 38 | 73.416 |
Eb2 | 39 | 77.782 |
D#2 | 39 | 77.782 |
Fb2 | 40 | 82.407 |
E2 | 40 | 82.407 |
F2 | 41 | 87.307 |
E#2 | 41 | 87.307 |
Gb2 | 42 | 92.499 |
F#2 | 42 | 92.499 |
G2 | 43 | 97.999 |
Ab2 | 44 | 103.83 |
G#2 | 44 | 103.83 |
A2 | 45 | 110 |
Bb2 | 46 | 116.54 |
A#2 | 46 | 116.54 |
Cb3 | 47 | 123.47 |
B2 | 47 | 123.47 |
C3 | 48 | 130.81 |
B#2 | 48 | 130.81 |
Db3 | 49 | 138.59 |
C#3 | 49 | 138.59 |
D3 | 50 | 146.83 |
Eb3 | 51 | 155.56 |
D#3 | 51 | 155.56 |
Fb3 | 52 | 164.81 |
E3 | 52 | 164.81 |
F3 | 53 | 174.61 |
E#3 | 53 | 174.61 |
Gb3 | 54 | 185 |
F#3 | 54 | 185 |
G3 | 55 | 196 |
Ab3 | 56 | 207.65 |
G#3 | 56 | 207.65 |
A3 | 57 | 220 |
Bb3 | 58 | 233.08 |
A#3 | 58 | 233.08 |
Cb4 | 59 | 246.94 |
B3 | 59 | 246.94 |
C4 | 60 | 261.63 |
B#3 | 60 | 261.63 |
Db4 | 61 | 277.18 |
C#4 | 61 | 277.18 |
D4 | 62 | 293.66 |
Eb4 | 63 | 311.13 |
D#4 | 63 | 311.13 |
Fb4 | 64 | 329.63 |
E4 | 64 | 329.63 |
F4 | 65 | 349.23 |
E#4 | 65 | 349.23 |
Gb4 | 66 | 369.99 |
F#4 | 66 | 369.99 |
G4 | 67 | 392 |
Ab4 | 68 | 415.3 |
G#4 | 68 | 415.3 |
A4 | 69 | 440 |
Bb4 | 70 | 466.16 |
A#4 | 70 | 466.16 |
Cb5 | 71 | 493.88 |
B4 | 71 | 493.88 |
C5 | 72 | 523.25 |
B#4 | 72 | 523.25 |
Db5 | 73 | 554.37 |
C#5 | 73 | 554.37 |
D5 | 74 | 587.33 |
Eb5 | 75 | 622.25 |
D#5 | 75 | 622.25 |
Fb5 | 76 | 659.26 |
E5 | 76 | 659.26 |
F5 | 77 | 698.46 |
E#5 | 77 | 698.46 |
Gb5 | 78 | 739.99 |
F#5 | 78 | 739.99 |
G5 | 79 | 783.99 |
Ab5 | 80 | 830.61 |
G#5 | 80 | 830.61 |
A5 | 81 | 880 |
Bb5 | 82 | 932.33 |
A#5 | 82 | 932.33 |
Cb6 | 83 | 987.77 |
B5 | 83 | 987.77 |
C6 | 84 | 1046.5 |
B#5 | 84 | 1046.5 |
Db6 | 85 | 1108.7 |
C#6 | 85 | 1108.7 |
D6 | 86 | 1174.7 |
Eb6 | 87 | 1244.5 |
D#6 | 87 | 1244.5 |
Fb6 | 88 | 1318.5 |
E6 | 88 | 1318.5 |
F6 | 89 | 1396.9 |
E#6 | 89 | 1396.9 |
Gb6 | 90 | 1480 |
F#6 | 90 | 1480 |
G6 | 91 | 1568 |
Ab6 | 92 | 1661.2 |
G#6 | 92 | 1661.2 |
A6 | 93 | 1760 |
Bb6 | 94 | 1864.7 |
A#6 | 94 | 1864.7 |
Cb7 | 95 | 1975.5 |
B6 | 95 | 1975.5 |
C7 | 96 | 2093 |
B#6 | 96 | 2093 |
Db7 | 97 | 2217.5 |
C#7 | 97 | 2217.5 |
D7 | 98 | 2349.3 |
Eb7 | 99 | 2489 |
D#7 | 99 | 2489 |
Fb7 | 100 | 2637 |
E7 | 100 | 2637 |
F7 | 101 | 2793.8 |
E#7 | 101 | 2793.8 |
Gb7 | 102 | 2960 |
F#7 | 102 | 2960 |
G7 | 103 | 3136 |
Ab7 | 104 | 3322.4 |
G#7 | 104 | 3322.4 |
A7 | 105 | 3520 |
Bb7 | 106 | 3729.3 |
A#7 | 106 | 3729.3 |
Cb8 | 107 | 3951.1 |
B7 | 107 | 3951.1 |
C8 | 108 | 4186 |
B#7 | 108 | 4186 |
Db8 | 109 | 4434.9 |
C#8 | 109 | 4434.9 |
D8 | 110 | 4698.6 |
Eb8 | 111 | 4978 |
D#8 | 111 | 4978 |
Fb8 | 112 | 5274 |
E8 | 112 | 5274 |
F8 | 113 | 5587.7 |
E#8 | 113 | 5587.7 |
Gb8 | 114 | 5919.9 |
F#8 | 114 | 5919.9 |
G8 | 115 | 6271.9 |
Ab8 | 116 | 6644.9 |
G#8 | 116 | 6644.9 |
A8 | 117 | 7040 |
Bb8 | 118 | 7458.6 |
A#8 | 118 | 7458.6 |
Cb9 | 119 | 7902.1 |
B8 | 119 | 7902.1 |
C9 | 120 | 8372 |
B#8 | 120 | 8372 |
Db9 | 121 | 8869.8 |
C#9 | 121 | 8869.8 |
D9 | 122 | 9397.3 |
Eb9 | 123 | 9956.1 |
D#9 | 123 | 9956.1 |
Fb9 | 124 | 10548 |
E9 | 124 | 10548 |
F9 | 125 | 11175 |
E#9 | 125 | 11175 |
Gb9 | 126 | 11840 |
F#9 | 126 | 11840 |
G9 | 127 | 12544 |
Ab9 | 128 | 13290 |
G#9 | 128 | 13290 |
A9 | 129 | 14080 |
Bb9 | 130 | 14917 |
A#9 | 130 | 14917 |
B9 | 131 | 15804 |
B#9 | 132 | 16744 |
MIDI, Notes and Frequency Recap
To recap, the MIDI code is a digital representation of the note.
The note name and octave number give a musical representation that musicians use.
The frequency is the physical property of the sound wave produced when the note is played.
Each note on the guitar can be described in these three ways.
Moving up a fret on the guitar increases the pitch by a semitone.
This change can be observed in the MIDI code (increases by 1), the note name and octave (changes according to musical scales), and the frequency (which increases).
That's all, to stay update, please subscribe here